Mark Scheme

Q1.

Question	Working	Answer	Notes
		10.4	P1 starts process by using cosine rule to find CD eg $(CD)^2 = 4.9^2 + 3.8^2 -$ $2 \times 4.9 \times 3.8 \times \cos 80 (= 31.98)$
			P1 uses sine rule to find angle ACD or angle ADC $eg \frac{\sin C}{3.8} = \frac{\sin 80}{5.655'} \text{ or } \frac{\sin D}{4.9} = \frac{\sin 80}{5.655'}$
			P1 uses sine rule to find BC or BD $eg \frac{BD}{\sin 25} = \frac{'5.655'}{\sin' 33.6'}$
			P1 process to find area eg 1/2 absinC A1 for 10.4 to 10.43

Q2.

Question	Working	Answer	Mark	Notes
Question	Working $AC^2 = 5^2 + 3^2$ $AC = \sqrt{25 + 9} \text{ (=5.83)}$ $\frac{5}{5.83} = \frac{DB}{3}$ $DB = \frac{5}{5.83} \times 3 \text{ (= 2.57)}$ $5 + 3 + 5.83 + 2.57 = $ OR $AC = \sqrt{25 + 9} \text{ (=5.83)}$ $\tan A = \frac{3}{5}$ $A = 30.96$	Answer 16.4	Mark 5	Notes M1 for $(AC^2) = 5^2 + 3^2 = 34$) M1 for $\sqrt{25 + 9}$ or $\sqrt{34}$ (=5.83) M1 for $\frac{5}{5 \cdot 83'} = \frac{DB}{3}$ or $DB \times AC = 5 \times 3$ M1 for $(DB =) \frac{5}{5 \cdot 83'} \times 3$ A1 for 16.4 to 16.41 OR M1 for $(AC^2) = 5^2 + 3^2$ (=34) M1 for $\sqrt{25 + 9}$ or $\sqrt{34}$ (=5.83) M1 for using a correct trig ratio in an attempt to find angle A or angle C , e.g.
	$\sin 30.96 = \frac{DB}{5}$ $DB = 5 \times \sin 30.96 (= 2.57)$ $5 + 3 + 5.83 + 2.57 =$			$\tan A = \frac{3}{5}$, $\sin A = \frac{3}{5.83}$, $\cos C = \frac{3}{5.83}$ M1 for using <i>DB</i> in a correct trig ratio, e.g. $\sin 30.96 = \frac{DB}{5}$ A1 for 16.4 to 16.41

Q3.

Question	Working	Answer	Mark	Notes
	$AB = 5 \sin 36 = \frac{5}{AD}$ $AD = \frac{5}{\sin 36}$ Or $\sin 36 = \frac{5}{BC}$ $BC = \frac{5}{\sin 36}$ $AD = BC$ OR $\cos 54 = \frac{5}{BC}$ $BC = \frac{5}{BC}$	8.51	4	B1 $AB = 5$ M1 $\sin 36 = \frac{5}{AD}$ or $\sin 36/5 = \sin 90/AD$ M1 $AD = \frac{5}{\sin 36}$ or $AD = \frac{5 \sin 90}{\sin 36}$ A1 $8.5 - 8.51$ OR M1 $\sin 36 = \frac{5}{BC}$ or $\sin 36/5 = \sin 90/BC$ M1 $BC = \frac{5}{\sin 36}$ or $BC = \frac{5 \sin 90}{\sin 36}$ B1 $AD = ^{1}BC'$ A1 $8.5 - 8.51$ OR B1 angle $DCB = 54$ or angle $DBC = 36$ M1 $C = \frac{5}{BC}$ M1 $C = \frac{5}{BC}$ M2 $C = \frac{5}{BC}$ M3 $C = \frac{5}{BC}$ M4 $C = \frac{5}{BC}$ M5 $C = \frac{5}{BC}$ M6 $C = \frac{5}{BC}$ M7 $C = \frac{5}{BC}$ M8 other methods such as $C = \frac{5}{BC}$ M9 other methods such as $C = \frac{5}{BC}$ M1 $C = \frac{5}{BC}$

Q4.

	Working	Answer	Mark	Notes
(a)		5, -4, -3	2	B2 for 5, -4 and -3 (B1 for 5 or -4 or -3)
(b)		correct curve	2	B2 for fully correct curve (B1 ft for at least 5 points plotted correctly)

	Working	Answer	Mark	Notes
(a)		-2 -1 0 1 2 3 4 8 3 0 -1 0 3 8	2	B2 for 8, -1, 0, 8 (B1 for at least two of 8, -1, 0, 8)
(b)		Correct curve	2	M1 (ft) for at least 5 points plotted
(c)	$x^2 - 2x - 3 = 0$ OR	3 and -1	2	A1 for a fully correct curve
	(x-3)(x+1)=0	ATCHMOMODER (1997	880	M1 for the straight line y = 3 drawn to intersect the "graph" from (a)
				A1 for both solutions OR
				M1 for identifying <i>y</i> = 3 from the table A1 for both solutions
				OR
				M1 for $(x \pm 3)(x \pm 1)$ A1 for both solutions

Q6.

Question	Working	Answer	Mark	Notes
(a)(i)		-0.4 to -0.5 4.4 to 4.5	3	B1 for value in range -0.4 to -0.5 and value in range 4.4 to 4.5 NB: condone values given as part of coordinates.
(ii)		-1.0 to -1.2		M1 for $x^2 - 4x - 2 = 4$ or
		5.0 to 5.2		line $y = 4$ drawn on graph or points marked with a y coord. of 4 or a value in range -1.0 to -1.2 or a value in range 5.0 to 5.2 A1 for value in range -1.0 to -1.2 and value in range 5.0 to 5.2 ; do not accept coordinates.
(b)		-1.6 to -1.8	3	M1 for $x + y = 6$ drawn on
(0)		4.6 to 4.8		graph
				A2 for value in range -1.6 to -1.8 and value in range 4.6 to 4.8
				(A1 for one correct value or both values given as coordinates)

Working	Answer	Mark	Notes
	A and $y = x^2+4$ B and $y = x^3$ C and $y = 2^x$	3	B3 for all correct (B2 for 2 correct) (B1 for 1 correct)

Q8.

Question	Working	Answer	Mark	Notes
(a)		Circle drawn	2	B2 fully correct circle drawn (B1 for circle drawn with centre (0,0) or circle drawn with radius 4) OR M1 at least 5 correct points calculated and plotted A1 fully correct circle drawn
(b)		x = 1.4, y = 3.8 x = -2.2, y = -3.4	3	M1 for $y = 2x + 1$ drawn or for elimination of one variable A1 for one correct pair of values given or for $x = 1.4$, -2.2 (± 0.2) or ft from graph provided 2 marks in (a) A1 for second correct pair of values given (± 0.2) or ft from graph provided 2 marks in (a)

Question	Working	Answer	Mark	Notes
(a)	Table of values x = -1 0 1 2 3 y = 2 2 6 10 14 OR Using y= mx + c, gradient = 4, y intercept = 2	Line from (1, 2) to (3,14)	3	(Table of values) M1 for at least 2 correct attempts to find points by substituting values of x. M1 ft for plotting at least 2 of their points (any points plotted from their table must be correct) A1 for correct line between 1 and 3
				(No table of values) M2 for at least 2 correct points (and no incorrect points) plotted OR line segment of y= 4x + 2 drawn (ignore any additional incorrect segments) (M1 for at least 3 correct points with no more than 2 incorrect points) A1 for correct line between -1 and 3
(b)(i) (ii)		y= 4x + c, c≠2 - 0.25	1	(Use of y= mx + c) M2 for at least 2 correct points (and no incorrect points) plotted OR line segment of y = 4x + 2 drawn (ignore any additional incorrect segments) (M1 for line drawn with gradient 4 OR line drawn with a y intercept of 2)
				A1 for correct line between 1 and 3 B1 Correct equation given. B1 Correct gradient given. Note – 0.25 could be written as - 1/4 oe

Q10.

Question	Working	Answer	Mark	AO	Notes
(a)	3x + 5y = 4	x = 3, y =	M	1.3b	M1 for correct method to
28 500	10x - 5y = 35	-1			eliminate one variable
	13x = 39		M	1.3b	M1 for correct method to
	Control of the contro		33000	500000000000000000000000000000000000000	find second variable
			A	1.3b	A1 for $x = 3$ and $y = -1$
(b)	x + 5 > 8	x = 4	В	1.3b	B1 for $x \ge 3$ or for $x \le 5$
35-3-5-3	x > 3	55457 355	В	1.3b	B1 for $x \ge 3$ and for $x \le 5$
	2x - 3 < 7		В	1.3b	B1 for $x = 4$ from $x > 3$
	2x < 10				and $x < 5$
	x < 5				

Q11.

Question	Working	Answer	Mark	Notes
(a)	Working 2a + 2t = 5t + 7 2a = 3t + 7 2a - 7 = 3t	Answer $ \frac{2a - 7}{3} $ $ x = \frac{2}{3} $ $ y = -1 \frac{1}{2} $	Mark 3	M1 for expansion of bracket eg $2 \times a + 2 \times t$ or divide all terms by 2 M1 for attempt at rearrangement of t term eg $-2t$ each side; $2a = 3t + ?$ but with separate terms. A1 $\frac{2a - 7}{3}$ oe but must have one term in t . NB: for $\frac{2}{3}$ accept working to 2 dp: 0.67, 0.66, 2.33 or better M1 for correct process to eliminate either x or y (condone one arithmetic error) M1 (dep on 1^{st} M1) for correct substitution of their found variable or other acceptable method A1 cao for both $x = \frac{2}{3}$ and $y = -1 \frac{1}{2}$ oe
				oe SC: B1 for $x = \frac{2}{3}$ or $y = -1 \frac{1}{2}$ oe NB: for $\frac{2}{3}$ accept working to 2 dp: 0.67 or 0.66 or better

Q12.

Question	Working	Answer	Mark	Notes
	½ × 2x × x × (x + 10)	$V = \chi^8 + 10\chi^2$	3	M1 for $\frac{1}{2} \times 2x \times x \times (x + 10)$ A1 for $x^8 + 10x^2$ or $x^2(x + 10)$ B1 for $V =$ cubic expression in x

Q13.

Question	Working	Answer	Mark	Notes
		$9x^2 + 7x - 2$	4	M1 for finding an expression for a missing length eg $4x - 1 - x - x$ (=2x - 1) or $x + 2 - 2x$ (=2 - x) M1 for a correct expression for one area from the cross-section, eg. $x \times 2x$ or $(4x - 1)(x + 2 - 2x)$ or for one volume of cuboid(s), eg. $x \times 2x \times (x + 1)$ M1 for a complete method to find the volume A1 for $9x^2 + 7x - 2$ or $(9x - 2)(x + 1)$ oe